Tabla I
N-̈́-p-Bromoanhanomethy luydantolns

Substituted hydantoin	ar						(1)		
	M1, ${ }^{\circ} \mathrm{C}^{\text {a }}$	vield ${ }^{\text {b }}$	Formia	\therefore	11)	c	11	N
	210. $5-212^{*}$	89	$\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{Br}^{-\mathrm{N}_{3} \mathrm{O}_{2}}$	52.76	4.98	11.54	22.98	5.11	11.40
5,5 -Diethyl	121-123*	7)	$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{BrN}_{3} \mathrm{O}_{2}$	49.42	5.33	12.35	49.63	-. 49	11.95
5, j -Dimethyl	196-196.5	76	$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{BrN}_{3} \mathrm{O}_{2}{ }^{9}$						
5,5 -Diphenyl	190-192 ${ }^{\text {b }}$	7	$\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{BrN}_{3} \mathrm{O}_{2}{ }^{\text {i }}$	60.3 ¢	4.16	9.63	60.36	4.40	9.81
5,5-Di-n-propyl	154.5-155 ${ }^{3}$	82	$\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{BrN}_{3} \mathrm{O}_{2}$	52.15	6.02	11.41	52.48	6.20	11.25
5 -Ethyl-0-phenyl	160-166). 5^{-h}	85	$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{BrN}_{3} \mathrm{O}_{2}$	5. 68	4.67	10.82	5. 5.7	4.88	10.63
5,5-Hexamethylene	200-200.亏3	42	$\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{Br}_{3} \mathrm{O}_{2}$	52.45	5.50	11.47	5) 41	5.59	11.45
Hydantoin ${ }^{\text {d }}$	178.5-179 ${ }^{\text {j }}$	90	$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{BrN}_{3} \mathrm{O}_{2}$	42.27	3.51	14.79	42.36	8.74	14.94
Menthonespiro ${ }^{\text {d }}$	246-246.5 ${ }^{\text {i }}$	85	$\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{BrN}_{3} \mathrm{O}_{2}$	58.89	6.42	10.29	55.87	6.23	10.11
5-p-Methoxypheryl	168-168.5 ${ }^{\text {h }}$	87	$\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{BrN}_{3} \mathrm{O}_{3}$	02.32	4.13	10.77	22.40	4.29	10.88
5-Methyl-5-p-chlorophenyl ${ }^{16}$	199°	74	$\mathrm{C}_{1} \mathrm{H}_{15} \mathrm{BrClN}_{3} \mathrm{O}_{2}$	49.96	3.70	10.28	50.16	3.75	10. 27
5 -Methyl-5-isobutyl	166-166.5	86	$\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{BrN}_{3} \mathrm{O}_{2}$	50.86	5.69	11.86	51.16	5.92	11.93
5-Methyl-5-pentyl	$134{ }^{2}$	86	$\mathrm{C}_{16} \mathrm{H}_{2}{ }^{2} \mathrm{BrN}_{3} \mathrm{O}_{2}$	52. 18	6.02	11.41	52.18	5.99	11.42
5-Methyl-5-phenyl	152. $5-153^{3}$	50	$\mathrm{C}_{48} \mathrm{H}_{16} \mathrm{BrN}_{3} \mathrm{O}_{2}$	54.56	4.31	11.23	. 4.37	4.83	11.31
i-Methyl-5-(2-thienyl)	155-156 ${ }^{\text {² }}$	89	$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{BrN}_{3} \mathrm{O}-\mathrm{S}$	4 ta	:i. 71	11.05	47.26	3.96	11.196
$\overline{5}, 5$-Pentamethylene ${ }^{\text {d }}$	223.5-224.5 ${ }^{h}$	84	$\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{BrN}_{3} \mathrm{O}$	-11.15	5.15	11.9:	3.16	5.37	11.5.
$i^{\text {i }}$-Phenyl ${ }^{\text {d }}$	186-186.5	S2	$\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{BrN}_{5} \mathrm{O}_{2}$	33.35	3.92	11.67	53.61	4.1;	11.51
$\overline{5}, \overline{0}$-Tetramethylene ${ }^{\text {d }}$	190.5-191 ${ }^{\text {F }}$	7	$\mathrm{C}_{14} \mathrm{H}_{6} \mathrm{BrN}_{3} \mathrm{O}_{4}$	49.72	4.74	12.42	49.93	5.03	12.55
$\overline{5}$-(p-Tolyl)	181-182 ${ }^{\text {j }}$	81	$\mathrm{C}_{2} 2 \mathrm{H}_{16} \mathrm{BrN}_{3} \mathrm{O}_{2}$	54. 56	4.31	11.23	54.58	4.33	11.0s

a All melting points were deternined using a Mel-Temp apparatus and are corrected. "The products ats obtained from the reartion mixture were of high purity, and the percentage wield reported is of unrecrystallized prodnct. ${ }^{c}$ Carbon and hydrogen analyses were conducted by the Schwarzkopf Microanalytical Laboratory, Woodside, N. Y. Nitrogen analyses were by the semimicro Kjeldahl method and were determined by Victor Krimsley and Eric Steinberg of this laboratory. ${ }^{a}$ The product precipitated out of solution shortly after refluxing had begun, and the reaction mixture was refluxed for 30 min. " hecrystallized from aqueous acetone. ' Recrystallized from aqueous ethanol. \& This compound was reported. ${ }^{2}{ }^{h}$ Recrystallized from ethanol. ${ }^{i}$ Lit. ${ }^{2} \mathrm{mp}$ 194.5-195.5 ${ }^{\circ}$, after repeated recrystallizations. ${ }^{i}$ Recrystallized from ethanol-dimethylformamide. ${ }^{*}$ A mixture of ethanol and dimethylformamidy was used as the reaction solvent.
the method described by Goodson and co-workers. ${ }^{3}$ Equimolar quantities of the hydantoin, p-bromoaniline, and formaldehyde were refluxed for 1 hr or less in ethanol solvent following the procedure previously described. ${ }^{2}$ The products were obtained upon filtering and cooling the filtrate and are reported in Table I.
Acknowledgment.-The author wishes to thank the nembers of his 1964-1965 organic chemistry class who prepared the compounds reported herein as part of a special laboratory exercise.
(3) L. H. Goodson, I. L. Honigberg. J. J. Lehman, and W. H. Burton. J. Org. Chem., 25, 1920 (1960).

Quinoxaline Studies. XIII. \mathbf{N}-(2-Quinoxaloyl)- α-amino Acids ${ }^{1.2}$
Shlomo Gerchakov, Peyer J. Whitman, and Harry P. Schejetz
Department of Chemistry, The University of Miami, Coral Gables, Florida 3312,
Received October 27, 1965

Several physiologically active polypeptides, such as levomycin, ${ }^{3}$ actinoleukin, ${ }^{4}$ echinomycin, ${ }^{5}$ and quinomycin, 6,7 have been shown to possess one or more quinoxaloy moieties. This prompted the preparation of a series of \mathbf{N}-(2-quinoxaloyl)- α-amino acids (Table I) for testing as antitumor agents.

[^0]
Experimental Section

Ultraviolet absorption spectra were determined with a Bausch and Lomb 505 spectrophotometer at concentrations of $5 \mathrm{mg} / \mathrm{l}$. of 95% ethanol. Amino acids utilized were of CP grade, pinchased from Man Research Laboratories.

2-(D-arabino-Tetrahydroxybutyl)quinoxaline Monohydrate.--A solution of 1505 g of surcrose, 432 g of o-phenylenedianine, 1600 ml of water, and 480 nll of acetic acid was stirred and reflnxed for \because hr while air was bubbled through the solution. Cooling the solution at 10° for 12 hr gave $213 \mathrm{~g}(19.9 \%)$ of light brown erystals, mp 189-1910 (it. mp $188^{\circ},^{8} \mathrm{mp} 190-191^{\circ 9}$). The material was used without further purification.

2-Quinoxalinecarboxylic Acid.--Sodium hydroxide (140) 4. was dissolved in a solution of 200 ml of $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$ and 800 ml if water at, 5^{-6}. After warming the solution to room temperature, 107 g of 2 -(D -arabino-tetrahydroxybuty) quinoxaline monohydrate was added, and the mixture was stirred while wanned carefully to 75°, at which time the reaction became self-snstaining. The temperature was carefully maintained at $80 \pm 1^{\circ}$ hy use of an ine bath until vigorous reaction ceased (about 30 min): stirring and heating at 80° of the light yellow solution was continued for 1 hr. (If the solution were dark and/or if solid were present, $25-1 n 1$ portions of $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$ solution were addad with continued stirring and heating until the solution was a clear, light yellow (olor.) The solution was transferred to a lirge beaker, stirred, and cooled to 0°, and then neutralized with 111 ml of cold $(1)^{\circ}$) $\mathrm{H}_{2} \mathrm{OO}_{4}$. The precipitate was filtered, then redissolved in a sohtion of 30 g of KOHI in 500 ml of watel. The basic solntion was treated with 5 g of decolorizing carbon and of filter aid, filtered, and then added to a stirred, cold $\left(0^{\circ}\right)$ solntion of 30 ml of $\mathrm{H}_{2} \mathrm{SO}_{4} \mathrm{in} 11$. of water. The precipitation was repeated to give $46 \mathrm{~g}(66 \%)$ of light yellow material, mp $200-2011^{\circ}$ dec. The product conld be recrystallized from hot water or ethanol, mp 215° dee (lit. ${ }^{\circ} \mathrm{mp} \mathrm{210}$). However, the per con yield and quality of 2 -quinoxaloyl chloride obtained in the sub)sequent procedure was the same whether precipitated or recrystallized uaterind was used.

N -(2-Quinoxaloyl)-L- α-alanine.--A mixture of 2.94 g of $1 .-\alpha-$

[^1]Table I

N(-2-Quinoxal.oyl)- α-amino Acid Derivatryes

$\begin{aligned} & \mathrm{N} \text {-(2-Quinoxaloyl) } \\ & \text { derivative of } \end{aligned}$	Formula	$\overrightarrow{\mathrm{C}}$	$\begin{gathered} \text {-Caled. } \\ \mathrm{H} \end{gathered}$	$\%-$	s	C	$- \text { Foun }$	d N N	s		Yield. $\%$	Recrystn solvent ${ }^{\text {a }}$	Mp. ${ }^{\circ} \mathrm{C}$ dec	$\left.\begin{array}{c} {[a] \mathbf{p}_{y} \operatorname{deg}\left(t_{.}{ }^{\circ} \mathrm{C}\right)} \\ \left(c \mathrm{I}_{1} \mathrm{aq} 5 \%\right. \\ \mathrm{NaHCO} \end{array}\right)$		$\lambda_{\text {mux }}^{99 \%}{ }^{\text {Ptoll }}$, m $\mu\left(\epsilon \times 10^{-2}\right)$
Ammonia	$\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{O}$	Known ${ }^{\text {b }}$								3	85	E	203.5-204 ${ }^{\text {b }}$		207 (1.77), 243 (3.75)	316 (6.73), 324 (6.81)
1-Alanine	$\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{3}$	58.8	4.52	17.1		58.9	4.53	17.3		3	59	W	237-238	+123.7 (26.0)	206 (0.85), 244 (2.01)	317 (3.69), 328 (3.80)
b-Alanine	$\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{3}$	58.8	4.52	17.1		58.9	4.40	17.3		3	56	W	236-237	-132.6 (26.0)	206 (0.85), 244 (2.01)	317 (3.69), 328 (3.80)
DL- α-Aminobutyric a acid	$\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{3}$	60.2	5.05	16.2		59.9	5.08	16.3		6	78	$\mathrm{E}+\mathrm{W}$	216.5-217.5		207 (1.71), 244 (3.29)	319 (5.28), 327 (5.68)
L-Aspartic acill	$\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{5}$	54.0	3.83	14.5		53.9	4.08	14.4		5	51	W	199-20.5	+5.6 (27.6)	206 (2.90), 243 (2.57)	318 (9.13), 326 (9.71)
${ }_{\text {If }}$ Cysteine	$\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$	52.0	4.00	15.2	11.6	51.5	3.85	15.3	11.8	5	26	DMF + W	213.5-214.5	-132.8 (27.0)	206 (2.48), 244 (3.92)	319 (6.46), 328 (6.69)
$\begin{aligned} & \text { L-Cystine-(N, } \mathrm{N}^{\prime}- \\ & \text { bis-2-quinoxaloyl) } \end{aligned}$	$\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~N}_{6} \mathrm{O}_{6} \mathrm{~S}_{2}$	52.2	3.65	15.2	11.6	52.2	3.68	14.9		7	46	E (abs)	207.0-207.5	-84.6 (27.0)	207 (4.55), 244 (7.03)	320 (13.3), 327 (12.0)
ol-Fthimine	$\mathrm{C}_{15} \mathrm{H}$	56.4	5.37	13.2	10.0	56.8	5.45	13.4	9.8	3	51	$\mathrm{H}+\mathrm{W}$	181.5-182.0		206 (2.64), 245 (3.98)	$\begin{aligned} & 278(8.07), 318(6.40) \\ & 328(6.93) \end{aligned}$
I-Glutamic acid	$\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{5}$	55.4	4.32	13.9		55.1	4.51	13.7		8	38	$\mathrm{E}+\mathrm{W}$	214-215	+29.7(20.0)	207 (2.16), 244 (3.72)	320 (5.51), 328 (5.39)
L-Ghitamine	$\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{4}$	55.6	4.67	18.5		55.6	4.81	18.4		5	53	W	198.0-198.5	+46.0(24.5)	207 (2.28), 244 (3.82)	318 (7.05), 328 (7.40)
Glysine	$\mathrm{C}_{16} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{3}$	Known ${ }^{\text {c }}$								3	6.5	W	230-231 ${ }^{\text {c }}$		207 (2.46), 244 (5.51)	320 (10.0), 327 (10.1)
${ }^{1}$-Isolencine	$\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3}$	62.7	5.96	14.6		62.5	6.15	14.8		4	74	E + W	188-189	+90.7(20.0)	206 (1.55$), 244$ (3.56)	318 (6.17), 328 (3.80)
L-Lencine	$\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3}$	62.7	5.96	14.6		62.7	6.12	14.4		5	56	L + W	212.5-214	+51).0(22.0)	207 (2.83), 244 (4.90)	320 (8.86), 327 (8.86)
1.-Methinnine	$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$	55.1	4.95	13.8	10.5	54.9	5.05	13.9	10.7	5	62	$\mathrm{E}+\mathrm{W}$	193-195	$+9.3(20.0)$	206 (2.29), 244 (3.72)	320 (6.47), 327 (6.89)
do-Norlentine	$\mathrm{C}_{45} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3}$	62.7	5.96	14.6		62.8	5.122	14.7		3	74	$\mathbf{E}+\mathrm{W}$	169-169.5		206 (2.8!), 244 (3.87)	318 (6.23), 326 (6.95)
du-Norvaline	$\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{3}$	61.5	5.53	15.4		61.5	5.74	15.4		3	55	W	189.5-190		207 (1.71), 244 (2.88)	319 (4.34), 327 (4.68)
I-Phenylalanine	$\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{3}$	67.3	4.71	13.1		67.2	4.81	13.1		8	72	$\mathrm{E}+\mathrm{W}$	160-161	-26.7 (22.5)	207 (2.59), 244 (4.47)	319 (8.21), 327 (8.39)
L-Serine	$\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{4}$	55.2	4.24	16.1		55.3	4.40	15.9		8	50	A +P	$186.5-187^{\text {d }}$	+75.7 (26.0)	206 (2.11), 244 (2.44)	319 (5.19), 327 (6.13)
d-Serine	$\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{4}$	55.2	4.24	16.1		55.2	4.46	15.9		8	46	$\mathrm{A}+\mathrm{P}$	186-187 ${ }^{\text {d }}$	-87.8 (26.0)	206 (2.11), 244 (2.44)	$319(5.99), 327$ (6.13)
Ir ${ }^{\text {'Thereonine }}$	$\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{4}$	56.7	4.76	15.3		56.7	4.65	15.2		3	73	$\underline{E}+\mathrm{W}$	212-212.5	+109.0 (27.5)	207 (2.03), 244 (3.30)	$319(5.82), 327$ (5.46)
L-Valine	$\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{3}$	61.5	5.53	15.4		61.3	5.79	15.0		4	87	$\mathrm{E}+\mathrm{W}$	1196.5-197.5	+96.1(22.0)	207 (2.35), 244 (5.0.3)	317 (8.85), 327 (9.42)
motaline	$\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{3}$	61.5	5.53	15.4		61.7	5.31)	15.4		4	87	$\mathrm{C}+\mathrm{W}$	208-20\%)		237 (2.35), 244 (5.03)	317 (8.85), 327 (9.42)

aloy dhuride ${ }^{10}$ (mp 113115°) was stirred at 25° for 3 h1'. Ihn: colorless mixtmre turned dark red in 30 min then becanime light yellow in 3 hr . Various amino acids required $3-8 \mathrm{hr}$ for this color change. The solution was treated with decolorizing carbon and filter aid, filtered, and brought to pH 4 with concentrated HCl , cooled at 10° for 12 hr , and filtered to give $6.94 \mathrm{~g}(85.5 \%)$ of white powder, $\operatorname{mp} 230-231^{\circ},[\alpha]^{26} \mathrm{p}+99.7^{\circ}$ (c 1 , aqueous $\overline{5}$. 0 NaHCO_{3}). The product was recrystallized from hot water to give $4.80 \mathrm{~g}(59.4 \%)$ of analytically pure material, $\mathrm{mp} 237^{\circ}-238^{\circ}$, $[\alpha]^{26 \mathrm{D}}+123.7^{\circ}\left(c 1\right.$, aqueous $\left.5 \% \mathrm{NaHCO} \mathrm{H}_{3}\right)$.
(10) H. C. Koppel, I. L. Honigberg. R. If. Springer, and C. C. Chang. J. Org. Chem., 28, 1119 (1963).

The Acetylation of 1-(β-d-Arabinofuranosvl)cytosine ${ }^{1}$

Abelardo J'. Mar'inez, Willifu W. Lee, ant Leon Gomomtin
Life Sciences Research, Slanford Research Inslilute, Menlo Park, California 94025

Received Sovember 19, 1965
The tri-O-acetate (II) and the tetratacetate (III) of 1 - $(\beta-\mathrm{D}-$ arabinofuranosyl)cytosine (I) have been prepared as compounds that may be pharmacologically more usefin forms of I which has antitumor properties. ${ }^{2}$ The tri-O-acetate was obtained by selective acetylation of the hydrochloride of I under mild conditions. Standard acetylation conditions readily converted I to III.

Experimental Section ${ }^{3}$

1-(2,3,5-Tri-O-acetyl- β-D-arabinofuranosyl)cytosine (II)..-A solution of acetic-triffuoroacetic anhydride was prepared by

[^2]mixing $1.90 \mathrm{~g}(91 \mathrm{mmoles})$ of trifluoroncetic anhydride and 30 ml ($0, \bar{i} 2$ n mole) of acetic acid and allowing this solntion to stand at room temperature for 30 min. The solution was roold and Nowly added (over about 10 min) to a solntion of $3.0 \mathrm{~g}(11) . \overline{7}$ mmoles) of $\mathrm{I} \cdot \mathrm{HCl}$ in $3 \overline{5} \mathrm{ml}$ of triflnoroacetin: arid ${ }^{4}$ so that the temperature did not rise above 10°. After 30 nin at 10° and abont 12 hr at room temperature, ${ }^{5}$ the dear solntion was eroled and the temperature maintained below 25° during treatment with 5.5 ml of absolute ethanol to decompose excess anhydride. After 0.5 hr at room temperature, the solution was evaporated in vacuo (water-bath temperature $40-50^{\circ}$). The residue was dissolved in 60 ml of water and heutralized to pH 6 with solid - VaHCO_{3}. The aqnemus solution ${ }^{6}$ was extracted with two 400ml portions of cthyl acetate ${ }^{7}$ which were combined, dried, and concentrated to abont 90 ml to afford $2.36 \mathrm{~g}(60 \%)$ of highly erystalline II, mp 189-190 , homogeneons by thin layer chromatography. Evaporation of the ethyl acetate filtrate afforded $0.82 \mathrm{~g}(21 \%)$ of amorphous product, mostly II with a trace of less acylated material. I third ethyl acetate extract of the aqueons solution afforded $0.4 \bar{g}$ more of material that was composed of II and less acylated material in abont equal amounts.

Recrystallization ul product from a previous rnm with ethyd acetate afforded the analytical sample of II; mp 189.0-189.5. $\lambda_{\text {atax }}^{\text {Niol }}(\mu) 2.90,3.00,3.20(N-H), 5.72(\mathrm{C}=0$ of acetate $) ; \lambda_{\max }^{117} 276$ $\left.\operatorname{m} \mu\left(\epsilon 13.8 \times 10^{3}\right) ; \lambda_{\operatorname{tax}}^{\operatorname{cn1}} 233 \operatorname{mn} \mu\left(\epsilon 8.1 \times 10^{3}\right), 270\left(9.1 \times 10^{3}\right)\right)^{*}$ $\left.\lambda_{\max }^{\prime, 11} 274 \mathrm{~m} \mu \in 10.0 \times 10^{3}\right) ;\left\lceil\alpha \mid+68^{\circ}\right.$. The methyl protons of the O-acetates were located between $\tau 7.85$ and 8.01 . It was homogeneous hy thin layer chromatography and by paper dromatography in these solvents: $A, R_{\text {A1 }} 1.44$, and B, Rad $2.4: 3$.

Anal. Caled for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{8}$: C, 48.8; II, $5.19 ; \mathrm{N}, 11.4$. Fonnd: C, $48.5 ; \mathrm{H}, 5.22 ; \mathrm{N}, 11.5$.

1-(2,3,0-Tri-O-acetyl-3-1)-arabinofuranosyl)-1/4-acetylcytosine (III). - A solntion of 4.70 g of $\mathrm{I} \cdot \mathrm{HCl}$ in 180 ml of dry pyridine was ireated with 18.0 ml of acetie anhydride (slight warming). The resultant sohntion was left overnight (about 20 hr) at roon temperature and was then evapomated in racuo (bath temperatnee $45-\overline{6}\left(0^{\circ}\right)$. The residne was treated with 20 ml of absolute etham, diluted with 150 ml of toluene, and again evaporated to dryness. The residue was partitioned between 300 ml of ethyl acetate and 75 ml of water. The ethyl acetate laver was washed with water, dried, coneentrated to $\overline{3} 0 \mathrm{ml}$, and then diluted 10 -fold with ether. The prodnct which crystallized was collected, washed with ethyl acelate-ether ($1: 10$), and dried to afford $5.86 \mathrm{~g}(85 \%)$ of III, mp 171-172 ${ }^{\circ}$, homogeneous by thin layer and paper chromatography, Recrystallization fronl ethyl acetate-ether afforded the analytical example of III: mp $171-171.5^{\circ} ; \lambda_{\text {max }}^{x}$ miol (μ) 3.15, $3.23(\mathrm{~N}-\mathrm{H}), 5.72$ (acetate) ; $\lambda_{\text {max }}^{\operatorname{nin} t} 247 \mathrm{n} \mu\left(\epsilon 11.2 \times 10^{3}\right)$, $302\left(9.0 \times 10^{3}\right) ; \lambda_{0.0}^{1,17}{ }^{7} 24^{7} \mathrm{~m} \mu\left(\epsilon 16.4 \times 10^{3}\right), 298\left(8.6 \times 10^{3}\right)^{8}$ $\lambda_{0, n}^{12 n} 275 \operatorname{mp} \mu\left(0.5 \times 10^{3}\right):[\alpha]+87^{\circ}$. The methyl protons of the O-iacetates appeared at $\tau 7.84-8.01$; the N-acetyl, at τ 7.67. It noved as a single spot in thin laver chromatograms ($R_{i} 0.90$) and on paper in these solvents: A, $R_{A+1} 1.75$, and $\mathrm{C}_{\text {. }}$ RA. 1.35 .

Anal. Caled for $\mathrm{C}_{4}-\mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{9}: ~ \mathrm{C}, 49.6 ; \mathrm{H}, 5.15 ; \mathrm{N}, 10.29$. Found: $\mathrm{C}, 49.5 ; \mathrm{H}, 5.23 ; \mathrm{N}, 9.86$.

Acknowledgment.-The anthors thank Dr. Peter Lim ant his staff for the nltraviolet and infrarel spectra, optical botations, and paper chromatography.

[^3]
[^0]: (1) We gratefully acknowledge support of this work under National Institutes of Health Grant GM-11968.
 (2) Paper XII of this series: E. Brill and II. P. Schultz. J. Org. Chem., 29. 579 (1964)
 (3) H. E. Carter, C. P. Schaffner, and D. Gottlieb, Arch. Biochem. Biophys., 53, 282 (1954).
 (4) M. Ueda, Y. Tanigawa, Y. Ogami, and H. Umezawa, J. Antibiotics (Tokyo), A7, 125 (1954).
 (5) W. Keller-Schierlain, M. L. Mihailovic, and V. Prelog, Helv. Chim. Acta. 42, 305 (1959).
 (6) T. Yoshida, K. Katagiri, and S. Yokozawa, J. Antibiotics (Tokyo). A14. 330 (1961).
 (7) J. I. Shoji and Ii. Katagiri, bid., A14, 335 (1961).

[^1]: (8) K. Maurer man B. Scheidt, Bef., 67. 1480 (1434).
 (9) 1). Horchin ant M. J. Miller, T. Org. Chem., 30. 24.5 (1965).

[^2]: (1) This work was carried out under the auspices of the Cancer Chemotherapy Sational Service Center, National Cancer Institute, National Institutes of Health. Public Health Service, Contract No. PH-43-64-000. The opinions expressed are those of the authors and are not necessarily those of the Cancer Chemotherapy National Service Center.
 (2) (a) R. W. Talley, and V. K. Vaitkevicius, Blood, 21, $3 \overline{0} 2$ (1963); (b) J. S. Evans, E. A. Musser, L. Bostwick, and G. D. Mengel, Cancer Res., 24, 1285 (1964): (c) J. E. Evans, L. Bostwick, and G. D. Mengel. Biochem. Pharmacol., 13. 983 (1964).
 (3) Melting points were determined on a Fisher-Johns apparatus and are uncorrected. Anhydrous MgSO_{4} was used as the drying agent. Paper chromatograms were run by the descending technique on Whatman No. 1 paper and the spots were located in $R_{\text {Ad }}$ units with adenine at 1.00 . The solvent systems were: A, 1-butanol-water (saturated): B. water: C. 1-hitanol-acetic acid-water $(5: 2: 3)$. Thin layer chromatograms were run on silica gel HF plates with a solvent system of methanol-CHCla (1:4). The sputs on plates and paper were detected by ultraviolet light. Optical rotations were determined in 1% solutions in N, N-dimethylformamide at 21.6° "sing the sodinm D line. The nmr spectra were determined with a Varian A-60 spectrometer, using CDCl_{3} sohtions containing $4 \% \quad \mathrm{Si}_{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{4}$ as internal standard. The spectra of II and III were compatible with their structures.

[^3]: (4) The inydrochlorile of I was solnble in trifluoroacetic açd bint nor in acetic acid, acetic anliydride, mixtures of these two, or in the solution of acetic-trifuoroacetic anhydride.
 (5) Aliquots were periodically examined by thin layer chromatograply for completeness of reaction. Compound II ($R_{\mathrm{f}} 0.66$) was readily distinguished from less acylated products ($R_{\mathrm{f}}<0.5$).
 (6) In one preparation of II, the product was left in water overnight. The yield of II was low, suggesting that considerable amounts of II had bydrolyzed.
 (7) Ethyl acetate cannot be replaced by CHCl_{3}. It was inefficient f (1 r extracting the quite water-soluble II from the aqueous phase.
 (8) J. Beránek and J. Pithha. Collection Czech. Chem. Commun., 29, ti25 (1964). have reported the ultraviolet spectra in ethanol for $2^{\prime} \cdot 3^{\prime} .5^{\prime}$-tri-oacetylcytidine ($\lambda_{\text {nax }} 243$ and $268 \mathrm{~m}_{\mu}$) and N^{4}-acetyl- $2^{\prime} \cdot 3^{\prime}-5^{\prime}$-tri- O -acetylcytidine ($\lambda_{u \operatorname{lax}} 249$ and $299 \mathrm{~m} \mathrm{\mu}$).

